Рыба восемь треугольник решение

Анекдоты смешные

Если вас критикуют, то значит вы всё делаете правильно. Потому что люди нападают на всякого у кого есть мозги.

2 + 2 = рыба
3 + 3 = восемь
7 + 7 = треугольник

Если у вас есть мозги, вы это поймёте 🙂

Вспомнилась история из школьного детства:
Задали на дом начертить –
1) Треугольник, имеющий тупой угол.
2) Треугольник, имеющий острый угол (подойдет любой треугольник, но не в этом суть).
3) Треугольник, имеющий прямой угол.
Почти половина класса подписали свои творения так:
1) Тупоугольник.
2) Остроугольник.
и.
3) Прямоугольник.))

2 + 2 = рыба
3 + 3 = восемь
7 + 7 = треугольник

Если у вас есть мозги, вы это поймёте 🙂

Если вас критикуют, то значит вы всё делаете правильно. Потому что люди нападают на всякого у кого есть мозги.

xxx:
Любовный треугольник – это когда на одну гипотенузу претендуют два катета.
yyy:
А почему вы решили, что треугольник прямоугольный?
zzz:
Действительно – давно известный факт: “в любовном треугольнике один из углов тупой”

Те, у кого есть мозги и связи, идут в бизнес.
Те, у кого есть мозги, но нет связей – в науку.
Те, у кого есть связи, но нет мозгов – в политику.

Стремитесь делать добро, и вы поймёте, что счастье будет бегать за вами.

На ужин рыба, сидим у телевизора. Я возмущаюсь, почему к рыбе мне показывают рекламу неаппетитную. Муж говорит, если не нравится, включи Сен-Санса, умирающего лебедя. Есть версия, что он тоже рыбной костью подавился. Поэтому так долго умирал.

Если вас критикуют, то значит вы всё делаете правильно. Потому что люди нападают на всякого у кого есть мозги.

Стремитесь делать добро, и вы поймёте, что счастье будет бегать за вами.

– Вася, сколько будет семью восемь!
– Не знаю!
– Ну ты напряги, напряги мозги-то!
– У меня всегда напрягается только один орган!

Девочки, если вас тяготит любовный треугольник – сбрейте!

Самое ценное – это мозги. Поэтому, мозги, следует прятать понадёжнее, даже если у вас их нет.

Послушайте правду от жителей Заполярья.

Язь – сорная описторхозная рыба, которую или выкидывать нахер или засаливать надолго. Обычно выкидываем или кошакам привозим. Рыба – это муксун и нельма как минимум. Есть ещё “белые” рыбы меньшей ценности, но вы всё равно их названий не запомните.

Кричать про язя что он рыба мечты всё равно что битого 30-летнего жигуля возводить в короли автострады.

Фильтруйте быдляж, уважаемые.

Один знакомый молодой хирург рассказал такую историю – когда он только пришел в интернатуру, шеф сразу спросил его – знает ли он треугольник Вишневскго. Вопрос поставил его в тупик, так как в анатомии нет такого понятия, ну то есть например треугольник Пирогова существует (определенная область шеи), а вот Вишневского – нету. Долго думал молодой хирург и копал литературу, а в результате оказалось, что треугольник Вишневского, это то что должен уметь каждый хирург – пить спирт, ссать в раковину и ебать медсестер)))

препод: Если треугольник с заливкой, то это гидросистема, если без, то это пневмосистема. Если же треуголника нет, то это отечественная схема, и сами с ней разбирайтесь.

препод: Если треугольник с заливкой, то это гидросистема, если без, то это пневмосистема. Если же треуголника нет, то это отечественная схема, и сами с ней разбирайтесь.

XXX:
нашла свою олимпиаду по математике.. >

Треугольник Паскаля – формула, свойства и применение

Основная формула

Строки треугольника обычно нумеруются, начиная со строки n = 0 в верхней части. Записи в каждой строке целочисленные и нумеруются слева, начиная с k = 0, обычно располагаются в шахматном порядке относительно чисел в соседних строчках. Построить фигуру можно следующим образом:

  • В центре верхней части листа ставится цифра “1”.
  • В следующем ряду — две единицы слева и справа от центра (получается треугольная форма).
  • В каждой последующей строке ряд будет начинаться и заканчиваться числом “1”. Внутренние члены вычисляются путём суммирования двух цифр над ним.

Запись в n строке и k столбце паскалевской фигуры обозначается (n k). Например, уникальная ненулевая запись в самой верхней строке (0 0) = 1. С помощью этого конструкция предыдущего абзаца может быть записана следующим образом, образуя формулу треугольника Паскаля (n k) = (n – 1 k-1) + (n – 1 k), для любого неотрицательного целого числа n и любого целого числа k от 0 до n включительно. Трёхмерная версия называется пирамидой или тетраэдром, а общие — симплексами.

История открытия

Паскаль ввёл в действие многие ранее недостаточно проверенные способы использования чисел треугольника, и он подробно описал их в, пожалуй, самом раннем из известных математических трактатов, специально посвящённых этому вопросу, в труде об арифметике Traité du triangle (1665). За столетия до того обсуждение чисел возникло в контексте индийских исследований комбинаторики и биномиальных чисел, а у греков были работы по «фигурным числам».

Из более поздних источников видно, что биномиальные коэффициенты и аддитивная формула для их генерации были известны ещё до II века до нашей эры по работам Пингала. К сожалению, бо́льшая часть трудов была утеряна. Варахамихира около 505 года дал чёткое описание аддитивной формулы, а более подробное объяснение того же правила было дано Халаюдхой (около 975 года). Он также объяснил неясные ссылки на Меру-прастаара, лестницы у горы Меру, дав первое сохранившееся определение расположению этих чисел, представленных в виде треугольника.

Примерно в 850 году джайнский математик Махавира вывел другую формулу для биномиальных коэффициентов, используя умножение, эквивалентное современной формуле. В 1068 году Бхаттотпала во время своей исследовательской деятельности вычислил четыре столбца первых шестнадцати строк. Он был первым признанным математиком, который уравнял аддитивные и мультипликативные формулы для этих чисел.

Примерно в то же время персидский учёный Аль-Караджи (953–1029) написал книгу (на данный момент утраченную), в которой содержалось первое описание треугольника Паскаля. Позднее работа была переписана персидским поэтом, астрономом и математиком Омаром Хайямом (1048–1131). Таким образом, в Иране фигура упоминается как треугольник Хайяма.

Известно несколько теорем, связанных с этой темой, включая биномы. Хайям использовал метод нахождения n-x корней, основанный на биномиальном разложении и, следовательно, на одноимённых коэффициентах. Треугольник был известен в Китае в начале XI века благодаря работе китайского математика Цзя Сианя (1010–1070). В XIII веке Ян Хуэй (1238–1298) представил этот способ, и поэтому в Китае он до сих пор называется треугольником Ян Хуэя.

На западе биномиальные коэффициенты были рассчитаны Жерсонидом в начале XIV века, он использовал мультипликативную формулу. Петрус Апиан (1495–1552) опубликовал полный треугольник на обложке своей книги примерно в 1527 году. Это была первая печатная версия фигуры в Европе. Майкл Стифель представил эту тему как таблицу фигурных тел в 1544 году.

В Италии паскалевский треугольник зовут другим именем, в честь итальянского алгебраиста Никколо Фонтана Тарталья (1500–1577). Вообще, современное имя фигура приобрела благодаря Пьеру Раймонду до Монтрмору (1708), который назвал треугольник «Таблица Паскаля для сочетаний» (дословно: Таблица мистера Паскаля для комбинаций) и Абрахамом Муавром (1730).

Отличительные черты

Треугольник Паскаля и его свойства — тема довольно обширная. Главное, в нём содержится множество моделей чисел. Обзор следует начать с простого — ряды:

  • Сумма элементов одной строки в два раза больше суммы строки, предшествующей ей. Например, строка 0 (самая верхняя) имеет значение 1, строчка 1–2, а 2 имеет значение 4 и т. д. Это потому что каждый элемент в строке производит два элемента в следующем ряду: один слева и один справа. Сумма элементов строки n равна 2 n .
  • Принимая произведение элементов в каждой строке, последовательность продуктов можно связать с основанием натурального логарифма.
  • В треугольнике Паскаля через бесконечный ряд Нилаканты можно найти число Пи.
  • Значение строки, если каждая запись считается десятичным знаком (имеется в виду, что числа больше 9 переносятся соответственно), является степенью 11 (11 n для строки n). Таким образом, в строке 2 ⟨1, 2, 1⟩ становится 11 2 , равно как ⟨1, 5, 10, 10, 5, 1⟩ в строке пять становится (после переноса) 161, 051, что составляет 11 5 . Это свойство объясняется установкой x = 10 в биномиальном разложении (x + 1) n и корректировкой значений в десятичной системе.
  • Некоторые числа в треугольнике Паскаля соотносятся с числами в треугольнике Лозанича.
  • Сумма квадратов элементов строки n равна среднему элементу строки 2 n. Например, 1 2 + 4 2 + 6 2 + 4 2 + 1 2 = 70.
  • В любой строчке n, где n является чётным, средний член за вычетом члена в двух точках слева равен каталонскому числу (n / 2 + 1).
  • В строчке р, где р представляет собой простое число, все члены в этой строке, за исключением 1s, являются кратными р.
  • Чётность. Для измерения нечётных терминов в строке n необходимо преобразовать n в двоичную форму. Пусть x будет числом 1s в двоичном представлении. Тогда количество нечётных членов будет 2 х . Эти числа являются значениями в последовательности Гулда.
  • Каждая запись в строке 2 n -1, n ≥ 0, является нечётной.
  • Полярность. Когда элементы строки треугольника Паскаля складываются и вычитаются вместе последовательно, каждая строка со средним числом, означающим строки с нечётным числом целых чисел, даёт 0 в качестве результата.

Диагонали треугольника содержат фигурные числа симплексов. Например:

  • Идущие вдоль левого и правого краёв диагонали содержат только 1.
  • Рядом с рёбрами диагонали содержат натуральные числа по порядку.
  • Двигаясь внутрь, следующая пара содержит треугольные числа по порядку.
  • Следующая пара — тетраэдрические, а следующая пара — числа пятиугольника.

Существуют простые алгоритмы для вычисления всех элементов в строке или диагонали без вычисления других элементов или факториалов.

Общие свойства

Образец, полученный путём раскраски только нечётных чисел, очень похож на фрактал, называемый треугольником Серпинского. Это сходство становится всё более точным, так как рассматривается больше строк в пределе, когда число рядов приближается к бесконечности, получающийся в результате шаблон представляет собой фигуру, предполагающую фиксированный периметр. В целом числа могут быть окрашены по-разному в зависимости от того, являются ли они кратными 3, 4 и т. д.

В треугольной части сетки количество кратчайших путей от заданного до верхнего угла треугольника является соответствующей записью в паскалевском треугольнике. На треугольной игровой доске Плинко это распределение должно давать вероятности выигрыша различных призов. Если строки треугольника выровнены по левому краю, диагональные полосы суммируются с числами Фибоначчи.

Благодаря простому построению факториалами можно дать очень простое представление фигуры Паскаля в терминах экспоненциальной матрицы: треугольник — это экспонента матрицы, которая имеет последовательность 1, 2, 3, 4… на её субдиагонали, а все другие точки – 0.

Количество элементов симплексов фигуры можно использовать в качестве справочной таблицы для количества элементов (рёбра и углы) в многогранниках (треугольник, тетраэдр, квадрат и куб).

Шаблон, созданный элементарным клеточным автоматом с использованием правила 60, является в точности паскалевским треугольником с биномиальными коэффициентами, приведёнными по модулю 2. Правило 102 также создаёт этот шаблон, когда завершающие нули опущены. Правило 90 создаёт тот же шаблон, но с пустой ячейкой, разделяющей каждую запись в строках. Фигура может быть расширена до отрицательных номеров строк.

Секреты треугольника

Конечно, сейчас большинство расчётов для решения задач не в классе можно сделать с помощью онлайн-калькулятора. Как пользоваться треугольником Паскаля и для чего он нужен, обычно рассказывают в школьном курсе математики. Однако его применение может быть гораздо шире, чем принято думать.

Читайте также:  Глубиномер для рыбалки: сделать своими руками или приобрести в магазине эхолот?

Начать следует со скрытых последовательностей. Первые два столбца фигуры не слишком интересны — это только цифры и натуральные числа. Следующий столбец — треугольные числа. Можно думать о них, как о серии точек, необходимых для создания групп треугольников разных размеров.

Точно так же четвёртый столбец — это тетраэдрические числа или треугольные пирамидальные. Как следует из их названия, они представляют собой раскладку точек, необходимых для создания пирамид с треугольными основаниями.

Столбцы строят таким образом, чтобы описывать «симплексы», которые являются просто экстраполяциями идеи тетраэдра в произвольные измерения. Следующий столбец — это 5-симплексные числа, затем 6-симплексные числа и так далее.

Полномочия двойки

Если суммировать каждую строку, получатся степени основания 2 начиная с 2⁰ = 1. Если изобразить это в таблице, то получится следующее:

1
1+1=2
1+2+1=4
1+3+3+1=8
1+4+6+4+1=16
1+5+10+10+5+1=32
1+6+15+20+15+6+1=64

Суммирование строк показывает силы базы 2.

Силы одиннадцати

Треугольник также показывает силы основания 11. Всё, что нужно сделать, это сложить числа в каждом ряду вместе. Как показывает исследовательский опыт, этого достаточно только для первых пяти строк. Сложности начинаются, когда записи состоят из двузначных чисел. Например:

1=11°
11=11¹
121=11²
1331=11³

Оказывается, всё, что нужно сделать — перенести десятки на одно число слева.

Совершенные квадраты

Если утверждать, что 4² – это 6 + 10 = 16, то можно найти идеальные квадраты натуральных чисел в столбце 2, суммируя число справа с числом ниже. Например:

  • 2² → 1 + 3 = 4
  • 3² → 3 + 6
  • 4² → 6 + 10 = 16 и так далее.

Комбинаторные варианты

Чтобы раскрыть скрытую последовательность Фибоначчи, которая на первый взгляд может отсутствовать, нужно суммировать диагонали лево-выровненного паскалевского треугольника. Первые 7 чисел в последовательности Фибоначчи: 1, 1, 2, 3, 5, 8, 13… найдены. Используя исходную ориентацию, следует заштриховать все нечётные числа, и получится изображение, похожее на знаменитый фрактальный треугольник Серпинского.

Возможно, самое интересное соотношение, найденное в треугольнике — это то, как можно использовать его для поиска комбинаторных чисел, поскольку его первые шесть строк написаны с помощью комбинаторной записи. Поэтому, если нужно рассчитать 4, стоит выбрать 2, затем максимально внимательно посмотреть на пятую строку, третью запись (поскольку счёт с нуля), и будет найден ответ.

Действия с биномами

Например, есть бином (x + y), и стоит задача повысить его до степени, такой как 2 или 3. Обычно нужно пройти долгий процесс умножения (x + y)² = (x + y)(x + y) и т. д. Если воспользоваться треугольником, решение будет найдено гораздо быстрее. К примеру, нужно расширить (x + y)³. Поскольку следует повышать (x + y) до третьей степени, то необходимо использовать значения в четвёртом ряду фигуры Паскаля (в качестве коэффициентов расширения). Затем заполнить значения x и y. Получится следующее: 1 x³ + 3 x²y + 3 xy² + 1 y³. Степень каждого члена соответствует степени, до которой возводится (x + y).

В виде более удобной формулы этот процесс представлен в теореме бинома. Как известно, всё лучше разбирать на примерах. Итак – (2x – 3)³. Пусть x будет первым слагаемым, а y – вторым. Тогда x = 2x, y = –3, n = 3 и k – целые числа от 0 до n = 3, в этом случае k = <0, 1, 2, 3>. Следует внести эти значения в формулу. Затем заполнить значения для k, которое имеет 4 разные версии, их нужно сложить вместе. Лучше упростить условия с показателями от нуля до единицы.

Как известно, комбинаторные числа взяты из треугольника, поэтому можно просто найти четвёртую строку и подставить в значения 1, 3, 3, 1 соответственно, используя соответствующие цифры Паскаля 1, 3, 3, 1. Последнее — необходимо завершить умножение и упрощение, в итоге должно получиться: 8 x³ – 36 x² + 54x – 27. С помощью этой теоремы можно расширить любой бином до любой степени, не тратя время на умножение.

Биномиальное распределение описывает распределение вероятностей на основе экспериментов, которые можно разделить на группы с двумя возможными исходами. Самый классический пример этого — бросание монеты. Например, есть задача выбросить «решку» — успех с вероятностью p. Тогда выпадение «орла» является случаем «неудачи» и имеет вероятность дополнения 1 – p.

Если спроектировать этот эксперимент с тремя испытаниями, с условием, что нужно узнать вероятность выпадения «решки», можно использовать функцию вероятности массы (pmf) для биномиального распределения, где n – это количество испытаний, а k – это число успехов. Предполагаемая вероятность удачи – 0,5 (р = 0,5). Самое время обратиться к треугольнику, используя комбинаторные числа: 1, 3, 3, 1. Вероятность получить ноль или три «решки» составляет 12,5%, в то время как переворот монеты один или два раза на сторону «орла» — 37,5%. Вот так математика может применяться в жизни.

Вариации на тему “Треугольник Паскаля”

Вариации на тему “Треугольник Паскаля”

Треугольник Паскаля является, пожалуй, одной из наиболее известных и изящных числовых схем во всей математике.

Блез Паскаль, французский математик и философ, посвятил ей специальный “Трактат об арифметическом треугольнике”.

Впрочем, эта треугольная таблица была известна задолго до 1665 года – даты выхода в свет трактата.

Так, в 1529 году треугольник Паскаля был воспроизведен на титульном листе учебника арифметики, написанного астрономом Петром Апианом.

Изображен треугольник и на иллюстрации книги “Яшмовое зеркало четырех элементов” китайского математика Чжу Шицзе, выпущенной в 1303 году.

Омар Хайям, бывший не только философом и поэтом, но и математиком, знал о существовании треугольника в 1110 году, в свою очередь заимствовав его из более ранних китайских или индийских источников.

Построение треугольника Паскаля

Треугольник Паскаля – это просто бесконечная числовая таблица “треугольной формы”, в которой на вершине и по боковым сторонам стоят единицы, каждое из остальных чисел равно сумме двух чисел, стоящих над ним слева и справа в предшествующей строке. Таблица обладает симметрией относительно оси, проходящей через его вершину.

Свойства треугольника Паскаля

Свойства строк

    Сумма чисел n-й строки Паскаля равна 2 n (потому что при переходе от каждой строки к следующей сумма членов удваивается, а для нулевой строки она равна 20=1) Все строки Паскаля симметричны (потому что при переходе от каждой строки к следующей свойство симметричности сохраняется, а нулевая строка симметрична) Каждый член строки Паскаля с номером n тогда и только тогда делится на т, когда т – простое число, а n – степень этого простого числа

Треугольные числа
Вдоль диагоналей, параллельных сторонам треугольника, выстроены треугольные, тетраэдрические и другие числа. Треугольные числа указывают количество шаров или других предметов, уложенных в виде треугольника (эти числа образуют следующую последовательность: 1,3,6,10,15,21. в которой 1- первое треугольное число, 3- второе треугольное число, 6-третье и т. д. до m-ro, которое показывает, сколько членов треугольника Паскаля содержится в первых m его строках – от нулевой до (m-1)-й).

Тетраэдрические числа
Члены последовательности 1,4, 10, 20, 36, 56. называются пирамидальными, или, более точно, тетраэдрическими числами: 1- первое тетраэдрическое число, 4- второе, 10- третье и т. д. до m-ro. Эти числа показывают, сколько шаров может быть уложено в виде треугольной пирамиды (тетраэдра).

Числа Фибоначчи
В 1228 году выдающийся итальянский математик Леонардо из Пизы, более известный сейчас под именем Фибоначчи, написал свою знаменитую “Книгу об абаке”. Одна из задач этой книги – задача о размножении кроликов – приводила к последовательности чисел 1,1,2,3,5,8,13,21. в которой каждый член, начиная с третьего, представляет собой сумму двух предыдущих членов. Эта последовательность носит название ряда Фибоначчи, члены ряда Фибоначчи называют числами Фибоначчи. Обозначая n-е число Фибоначчи через

Между рядом Фибоначчи и треугольником Паскаля существует любопытная связь. Образуем для каждой восходящей диагонали треугольника Паскаля сумму всех стоящих на этой диагонали чисел. Получим для первой диагонали 1, для второй 1, для третьей 2, для четвертой 3, для пятой 5. Мы получили не что иное, как пять начальных чисел Фибоначчи. Оказывается, что всегда сумма чисел n-й диагонали есть n-е число Фибоначчи. Для доказательства интересующего нас предложения достаточно показать, что сумма всех чисел, составляющих n-ю и (n+1) диоганали треугольника Паскаля равна сумме чисел, составляющих его т+2-ю диагональ.

Биномиальные коэффициенты
Числа, стоящие по горизонтальным строкам, являются биномиальными коэффициентами. Строка с номером n состоит из коэффициентов разложения бинома (1+n)n. Покажем это при помощи операции Паскаля. Но сначала представим, как биномиальные коэффициенты определяются.

Возьмем бином 1+х и начнем возводить его в степени 0, 1, 2, 3 и т. д., располагая получающиеся при этом многочлены по возрастающим степеням буквы х. Мы получим

Вообще, для любого целого неотрицательного числа n
(1+x)n=a0+a1x+a2x2+. +apxp,
где a0,a1. ap

Последнее соотношение можно переписать в виде а из соотношений 1-4 получаем

Образовался треугольник Паскаля, каждый элемент которого

Именно это фундаментальное свойство треугольника Паскаля связывает его не только с комбинаторикой и теорией вероятностей, но и с другими областями математики и ее приложений.

Решение задач с применением треугольника Паскаля

Старинные задачи о случайном
Еще в глубокой древности появились различные азартные игры. В Древней Греции и Риме широкое распространение получили игры в астрагалы, когда игроки бросали кости животных. Также пользовались популярностью игральные кости – кубики с нанесенными на гранях точками. Позднее азартные игры распространились в средневековой Европе.

Эти игры подарили математикам массу интересных задач, которые потом легли в основу теории вероятностей. Очень популярны были задачи о дележе ставки. Ведь, как правило, игра велась на деньги: игроки делали ставки, а победитель забирал всю сумму. Однако игра иногда прерывалась раньше финала, и возникал вопрос: как разделить деньги.

Многие математики занимались решением этой проблемы, но до середины XVII века так и не нашли его. В 1654 году между французскими математиками Блезом Паскалем, уже хорошо известным нам, и Пьером Ферма возникла переписка по поводу ряда комбинаторных задач, в том числе и задач о дележе ставки. Оба ученых, хотя и несколько разными путями, пришли к верному решению, деля ставку пропорционально вероятности выигрыша всей суммы при продолжении игры.

Следует отметить, что до них никто из математиков вероятность событий не вычислял, в их переписке теория вероятностей и комбинаторика впервые были научно обоснованы, и поэтому Паскаль и Ферма считаются основателями теории вероятностей.

Рассмотрим одну из задач Ферма, решенную Паскалем с помощью своей числовой таблицы.

Пусть до выигрыша всей встречи игроку А недостает двух партий, а игроку В – трех партий. Как справедливо разделить ставку, если игра прервана?

Паскаль складывает количество партий, недостающих игрокам, и берет строку таблицы, в которой количество членов равно найденной сумме, т. е. 5. Тогда доля игрока А будет равна сумме трех (по количеству партий, недостающих игроку В) первых членов пятой строки, а доля игрока В – сумме оставшихся двух чисел. Выпишем эту строку: 1,4,6,4, 1. Доля игрока А равна 1+4+6=11, а доля В -1+4=5.

Читайте также:  Зимняя рыбалка. Ловля хищника на жерлицу

Другие арифметические треугольники

Рассмотрим треугольники, построение которых связано с известными однопараметрическими комбинаторными числами. Создание таких треугольников основано на принципе построения рассматриваемого выше треугольника Паскаля.

Треугольник Люка

Рассмотрим построенный арифметический треугольник. Данный треугольник носит название треугольника Люка, так как суммы чисел, стоящих на восходящих диагоналях, дают последовательность чисел Люка: 1, 3, 4, 7, 11, 18, / которые могут быть определены как

Ln=Ln-1+Ln-2, L0=2, L1=1

Каждый элемент треугольника определяется по правилу Паскаля Ln+1,k=Ln, k-1+Ln, k при начальных условиях L1,0=1, L1,1=2 и L0,k=0

т. е. n-я строка треугольника люка может быть получена сложением n-й и (n-1)-й строк треугольника Паскаля.

Треугольник Фибоначчи

Из чисел (fm, n), удовлетворяющих уравнениям
fm, n=fm-1,n+fm-2,n,
fm, n=fm-1,n-1+fm-2,n-2, где с начальными условиями f0,0=f1,0=f1,1=f2,1=1 строится следующий треугольник.

fm, n =fn fn-m, m Є n Є 0, где fn – n – е число Фибоначчи. Построенный треугольник назван треугольником Фибоначчи.

Треугольник Трибоначчи

Рассмотрим еще один треугольник, создание которого основано на методе построения треугольника Паскаля. Это треугольник Трибоначчи. Он назван так потому, что суммы элементов, стоящих на восходящих диагоналях, образуют последовательность чисел Трибоначчи: 1,1,2,4,7,13,24,44. которая может быть определена следующим рекуррентным соотношением: tn+3 = tn+2 + tn+1 + tn с начальными условиями t0 = 1, t1 = 1, t2 = 2

“Знаковый треугольник”

Построение “знакового треугольника”

Перед нами треугольник, составленный из одних знаков, плюсов и минусов, по принципу образования треугольника Паскаля. В отличие от последнего, он расположен основанием вверх.

Сначала задается первая строка, состоящая из произвольного количества знаков и их расположения. Каждый знак следующей строки получается путем перемножения двух вышестоящих знаков.

Одной из наших задач является установить, при каком количестве знаков первой строки число минусов и плюсов будет одинаковым. Общее количество знаков в таблице можно определить формулой

где n – число знаков в первой строке.

Образуется последовательность чисел, при которых количество минусов и плюсов может быть равным: 3, 4, 7, 8, 11, 12, 15, 16. каждое из которых показывает количество знаков в первой строке. Однако не установлено, при каком расположении знаков число минусов и плюсов будет однозначно одинаковым.

Второй нашей задачей, касающейся треугольника произведения знаков, является установление наименьшего количества плюсов, которое может иметь “знаковый треугольник”.

Существует интересная последовательность знаков первой строки: +, -, -, +, -, -, . (или -, -, + ,- ,- ,+ , . ), при которой число плюсов, как до сих пор считается, будет наименьшим и равным 1/3 от общего числа знаков, т. е. равным

Важно заметить, что если постепенно обходить треугольник, то последовательность знаков +, -, -, . сохранится.

Обратим внимание на тот факт, что наименьшее количество плюсов, равное 1/3 от общего числа знаков, можно увидеть и в треугольнике при n = 2.

Задача “Семь треугольников” и головоломка “7 в квадрате”

Разделы: Математика

На сайте Г.И. Яркового я обнаружил эту геометрическую головоломку. Широко известная в математике спираль, составленная из подобных треугольников. Её можно накручивать сколь угодно долго, но автор ограничился семью первыми треугольниками, и предлагает сложить их них квадрат!

Отношение катетов или величину острых углов треугольников он не указал, а без знания этих величин решать головоломку бессмысленно.

Заинтересовав этой проблемой своих кружковцев, мы принялись за исследование. Первое, что предложили ребята: не складывать квадрат из треугольников, а наоборот, разрезать квадрат на подобные треугольники. И это логично, потому, что параметры подобных треугольников нам были неизвестны.

Во-вторых, заметили, что квадрат легко превращается в прямоугольный треугольник. Для этого достаточно разрезать его на две части прямой, проходящей через вершину квадрата и середину его стороны, и сложить прямоугольный треугольник. Разбиение прямоугольного треугольника на подобные треугольники выполняется делением по высоте, проведенной к гипотенузе. Сделав ещё пять разрезов, получим разбиение треугольника на семь подобных треугольников.

Кажется, что головоломка решена, но ребята выполнили расчеты и …. С одной стороны, пусть АВ = 4, это сторона исходного квадрата. С другой стороны, решая прямоугольные треугольники, можно последовательно вычислить длины отрезков. Длина АВ окажется равной 3,90625, что отличается, хотя и не много, от 4. Возникает противоречие, значит такое разрезание квадрата на треугольники с отношением катетов 2:1 – не верное.

Но какое, же соотношение между катетами в головоломке?

Следующим объектом нашего исследования стали прямоугольные треугольники с углами 30° и 60° градусов. Взяв за основу прямоугольный треугольник с такими углами, разрежем, описанным выше деление по высоте, его на восемь треугольников. Треугольник NKB удалим. Длины сторон всех треугольников нетрудно посчитать, они указаны на рисунке. Квадрирование осуществляется переносом треугольника АВМ на место треугольника CKD. Кажется, что задача решена, но …. Давайте посчитаем!

Меньший катет самого маленького треугольника примем за 1. Тогда вычислив длины АС и СК, замечаем, что АС 3 x + sinxcos 5 x = 1;

Мы долго мучились, пытаясь решить это уравнение. Но к моему стыду уравнение оказалось для нас неприступным, хотя было много попыток решить это уравнение. Например, заметив, что tgx ≠ 0, можно умножить левую и правую части уравнения, получим sin 2 x + sin 2 x cos 2 x + sin 2 xcos 4 x = tgx, но выразив sin 2 x через cos 2 x и приведя подобные, получим уравнение cos 6 x+ tgx = 1. Оно лишь только на первый взгляд простое.

Ещё были попытки решить его через двойной угол, но они тоже оказались тоже неудачными.

Поскольку осилить это уравнение нам не удалось, решили использовать компьютерную программу построения графиков функции, и выяснить существует ли такое значение аргумента х, при котором значение функции у = sinxcosx + sinxcos 3 x + sinxcos 5 x принимает значение равное 1.

Проанализировав график этой функции, замечаем, что у=1 похоже является экстремальным значением этой функции и принимает она это значение при х ≈ π /6, ведь нас интересует только острый угол. Как найти его точное значение?

Пытались исследовать функцию с помощью производной, но она оказалась громоздкой, и это направление тоже оказалось для нас безуспешным.

Что делать далее? Вспомнили про программирование, уроки информатики и владение языком программирования. На языке TurboBasic написали простенькую программу с использованием цикла. Вот что получилось:

Rem семь треугольников
cls
for x=0.51794 to 0.51795 step 0.000001
y=sin(x)*cos(x)*(1+(cos(x))^2+(cos(x))^4)
print x,y
next x
end

Постепенно сужая промежуток в котором изменяется угол х и увеличивая точность, нам удалось уловить приближенное значение угла х, при котором функция у(х) принимает значение равное 1. Приводим распечатку результатов:

Из приведенной таблицы видно, этот угол равен х 0.5179480910301208 радиан, и в градусах это х 29° 40’ 34’’.

Таблица позволяет сделать вывод, что у = 1 не является экстремальным значением, значит есть еще одно значение х, при котором функция у(х) принимает значение равное 1. Заставив работать эту же программу на другом промежутке,

Rem семь треугольников
cls
for x=0.59876 to 0.59877 step 0.000001
y=sin(x)*cos(x)*(1+(cos(x))^2+(cos(x))^4)
print x,y
next x
end

получили следующую таблицу значений:

В таблице находим ещё одно приближенное значение угла х 0.598766 рад, в градусах это угол х 34 18’ 24’’. Точного значения угла и в этом случае не найдено, но зато мы теперь точно знаем, что в промежутке острых углов функция у(х) значение 1 принимает дважды при х 29° 40’ 34’’ и при х 34 18’ 24’’

Это не очень хорошо видно на приведенном выше графике потому, что линия ведь тоже имеет толщину, а значения функции отличаются от 1 на тысячные доли. Точнее сказать, на приведенном графике этого вообще нельзя увидеть. И только таблица значений функции, полученная с помощью компьютерной программы, позволила нам увидеть, что существуют два угла.

Оказывается, чтобы увеличить гипотенузу самого большого треугольника в таком разрезании, и приблизить её по значению к сумме длин трёх отрезков, угол 30° треугольников можно не только уменьшать, но и увеличивать! Жаль, что мы не смогли найти точные значения этих углов!

Если бы удалось решить уравнение sinxcosx + sinxcos 3 x + sinxcos 5 x = 1 , то можно было бы сформулировать и интересную, на мой взгляд, задачу примерно такого содержания: Квадрат сложен из семи подобных треугольников (картинка предлагается). Найдите острый угол этих треугольников.

Ведь часто в сборниках предлагают решить трудное тригонометрическое уравнение, непонятно как появившееся на свет, а здесь-то видно всё как на ладони, как рождается новое тригонометрическое уравнение. Но мы этого сделать не смогли, поэтому задача не получилась! А жаль!

Но если задача не получилась, что же с головоломкой. Мы с кружковцами с вдохновением пытались разобраться во всех тонкостях этой интересной головоломки, и пришли к выводу, что автору не надо переживать насчет приближенного решения. Самое главное такой угол есть, и их даже два. А каково его значение в головоломочном варианте, 30° или 29° 40’ 34’’, совершенно не важно, потому, что отличить их на практике совершенно невозможно.

Проведенные расчеты с помощь компьютерной программы показывают, что острый угол этих подобных треугольников может варьироваться от 29° до 35°, то есть диапазон достаточно широк, и все такие углы можно использовать в головоломке. Погрешности, возникающие при этом будут незаметны в игре с головоломкой.

Пообщавшись в Москве с автором головоломки на ежегодной декабрьской встрече всероссийского клуба ценителей головоломок “Диоген”, я выяснил следующее. Г.И. Ярковой живет г. Тольятти, страстный любитель головоломок, придумал и собственноручно изготовил много оригинальных головоломок. Он – не профессиональный математик, как говорят, любитель занимательной математики, и является трехкратным чемпионом России по решению головоломок в заочном первенстве.

Исследуемая нами головоломка – одно из его творений. Головоломка производится на московском предприятии “Планета головоломок” в двух вариантах: из дерева или из пластика. Её можно купить на сайте. Партия этих головоломок уже продана в Японии. Головоломка называется “7 в квадрате”, так как в начальной позиции из четырех элементов выкладывается цифра “семь”.

Автор любезно подарил мне пластиковый вариант головоломки. Привожу красивые фотографии начального и конечного состояний головоломки. Надо отметить еще один выигрышный ход производителей головоломки – они раскрасили треугольники в два цвета с чередованием. В этом случае и цифра “7” отчетливо выделяется, и конечное решение становится красивым по цветовой гамме. Творческий подход!!

Ну а какой острый угол подобных треугольников в головоломке? Это уже ни кому не важно! Головоломка живет своей жизнью, распространяется по всему миру, потому, что с ней Ярковой Г.И. участвовал в обмене на международной встречи любителей головоломок.

Редкие знаки на руке. Хиромантия интересной символики с расшифровкой

Изучая основные и второстепенные линии на ладони, человек находит у себя интересные сочетания нитей, которые создают рисунок или отдельные символы. Каждая черточка, каждый символ несет определенное значение в жизни человека. Некоторые рисунки можно увидеть практически на каждой ладони, а некоторые символы встречаются редко. Давайте рассмотрим, какие встречаются редкие знаки на руке в хиромантии.

Символы экстрасенсорики – узнайте, есть ли у вас способности?

Если говорить в целом, то экстрасенсорные способности могут быть у любого человека. Но не каждый их развивает или не знает, что он живет с таким даром.

Читайте также:  Воблер Jaxon Flat Crank: описание и фото

Знаки экстросенсов

Любая наука предусматривает изучение многих направлений, не исключение и хиромантия. Редкие знаки на руке, указывающие на особый дар, могут проявляться по-разному.

У одних людей дар ясновидения, другим свойственно заниматься целительством, ну а у третьих может открыться талант к оккультизму. Давайте рассмотрим эти редкие символы, которые указывают на особенных людей.

Картинка, как на рисунке под №3 указывает на людей, которые отличаются харизмой и привлекает к себе людей магнитом. Такие личности способны притягивать внимание и пользуются уважением среди окружения.

Рыба и ее позитивное влияние на судьбу человека

Какие еще счастливые и редкие знаки в хиромантии? Конечно же рыба, которая не имеет негативных значений.

Рыбка в вашей жизни

На холме или линии АполлонаПеред вами человек с отличным творческим потенциалом. Обладатели рисунка ярко выделяются из толпы и в жизни могут добиться блистательного творческого успеха.
Символ и линия умаВ человеке с рождения заложен научный потенциал, но отличается чрезмерной восприимчивостью и впечатлительностью. Предвещает степень учености и не просто высшее образование, а подкованное высочайшим профессионализмом.
Рыба и линия СудьбыВ хиромантии, редкие линии и знаки встречаются не на всех руках. Так и рыба на Судьбоносной черте указывает на успехи человека на тот момент времени, где расположился символ. Хиромантия вам советует в тот период времени проявить и реализовать себя, сама судьба вам дает этот шанс.
Под мизинцем, в районе холма МеркурияПредвещает успехи в бизнесе, так как человек от природы отличается коммерческими способностями. Такие люди наделены активностью ума и хитростью.
На жизненной линииВ частых случаях располагается на холме Венеры. Обладатель рисунка сможет достичь успеха, благодаря поддержке родственников.

Примечание. При чтении ладоней, обратите внимание, куда «плывет» ваша рыбка. Помните, что удача может ускользнуть, поэтому ловите момент.

Хиромантия, редкие знаки на ладонях, которые приносят удачу

В этом разделе хочется рассказать о некоторых намеках на руках, которые появляются редко, но несут важное и значимое влияние на судьбу и жизнь человека.

Направление: сложная научная работа или духовный учитель (если свастика под указательным пальцем).

Особые и кармические символы: бабочка, песочные часы, восьмерка и бесконечность

Вся перечисленная символика не относится к категории очень хороших или очень плохих знаков. И не связаны с высоким достатком и эталоном благородства. Все зависит от того, где и как расположились символы.

Хиромантия, особые знаки на руке, знак бабочки

Знак бабочки или песочные часы могут встречаться у людей, состоящих в криминальных группировках и далеко не богатых.

Скорей всего такая символика указывает на талантливую и развитую личность. Но талант – это не всегда успех и деньги. Таланту нужно много работать и им нужна помощь состоятельных людей.

Рисунки на руках: бабочка, часы, бесконечность и восьмерка относится к кармическим знакам. В жизни таких людей уже все предопределено за них и человек не в силах что-то изменить.

Хироманты часто сравнивают бабочку с руническим символом «Дагаз», что предвещает очень быстрые и резкие перемены в жизни человека. Это трансформация от смерти к жизни и наоборот.

Какие линии на руке редкие, скрещенные в знак бабочки

У человека могут произойти некоторые события в жизни, после чего он опускает руки и нет желания жить дальше. Но наступает весна, все проходит и появляется вкус к жизни. Или наоборот, все отлично, но успех лишь временный, после взлета идет падение, если не работать и ничего не предпринимать для своего развития.

Песочные часы

Это период раздумий и переосмысления предыдущих жизненных ситуаций, анализ себя.

Взлеты и падения

Значение символа можно отразить на примерах:

  • Выдающийся математик может отказаться от своих достижений в пользу духовного развития с фанатизмом.
  • Или учитель литературы, всем на удивление неожиданно становится лидером преступной группировки.

Что означает знак бесконечности на ладони в хиромантии?

Такой символ указывает на везения и неприятности в жизни человека. Баланс равновесия: сколько везений, столько и неприятностей. Так хочет судьба. Человек ходит по кругу: поднимается по кривой и спускается вниз, ничего не меняется.

Символ восьмерки

Есть сходство с бесконечностью, но здесь все намного резче. Человек может очень многого добиться в жизни и взлететь очень высоко, а потом резко упасть и не просто, а с грохотом, прямо на самое дно. Утром может быть целая куча денег, а к вечеру лишь долги. Психологи сопоставляют символ с Уробороса, которая связана с противоречиями.

Какие отличия песочных часов и бабочки от бесконечности и восьмерки? В первых 2-х случаях, хиромант может определить эти взлеты и падения. В вторых 2- х кармических символах, человек просто ходит по кругу

Делаем выводы

Появление редкой символики на ладонях не случайно, так как все это служит в качестве подсказки не только для хироманта и для человека.

Увидев у себя редкие знаки на руке, хироманты не советуют делать поспешные выводы и бегом бежать, к примеру, заниматься целительством. Многое зависит от расположения знака и влияния других линий. Посоветуйтесь со специалистами, изучите больше информации и сделайте для себя определение.

Решение треугольников онлайн

С помощю этого онлайн калькулятора можно решить треугольники, т.е. найти неизвестные элементы (стороны, углы) треугольника. Теоретическую часть и численные примеры смотрите ниже.

Решение треугольников − это нахождение всех его элементов (трех сторон и трех углов) по трем известным элементам (сторонам и углам). В статье Треугольники. Признаки равенства треугольников рассматриваются условия, при которых два треугольника оказываются равными друг друга. Как следует из статьи, треугольник однозначно определяется тремя элементами. Это:

  1. Три стороны треугольника.
  2. Две стороны треугольника и угол между ними.
  3. Две стороны и угол противостоящий к одному из этих сторон треугольника.
  4. Одна сторона и любые два угла.

Заметим, что если у треугольника известны два угла, то легко найти третий угол, т.к. сумма всех углов треугольника равна 180°.

Решение треугольника по трем сторонам

Пусть известны три стороны треугольника a, b, c (Рис.1). Найдем .

(1)
(2)

Из (1) и (2) находим cosA, cosB и углы A и B (используя калькулятор). Далее, угол C находим из выражения

.

Пример 1. Известны стороны треугольника ABC: Найти (Рис.1).

Решение. Из формул (1) и (2) находим:

.
.

Используя онлайн калькулятор для arcsin и arccos находим углы A и B:

, .

И, наконец, находим угол C:

Решение треугольника по двум сторонам и углу между ними

Пусть известны стороны треугольника a и b и угол между ними C (Рис.2). Найдем сторону c и углы A и B.

Найдем сторону c используя теорему косинусов:

.
.

Далее, из формулы

.

найдем cosA:

.(3)

Далее из (3) с помощью калькулятора находим угол A.

Поскольку уже нам известны два угла то находим третий:

.

Пример 2. Известны две стороны треугольника ABC: и (Рис.2). Найти сторону c и углы A и B.

Решение. Иcпользуя теорму косинусов найдем сторону c:

,
.

Из формулы (3) найдем cosA:

.

Поскольку уже нам известны два угла то находим третий:

.

Решение треугольника по стороне и любым двум углам

Пусть известна сторона треугольника a и углы A и B (Рис.4). Найдем стороны b и c и угол C.

Так как, уже известны два угла, то можно найти третий:

.

Далее, для находждения сторон b и c воспользуемся тероемой синусов:

, .
, .

Пример 3. Известна одна сторона треугольника ABC: и углы (Рис.3). Найти стороны b и c и угол С.

Решение. Поскольку известны два угла, то легко можно найти третий угол С:

Найдем сторону b. Из теоремы синусов имеем:

Найдем сторону с. Из теоремы синусов имеем:

Bermuda Triangle

Информация

издатель: Milton Bradley
.
язык:Языконезависимая
Английский

Поcтавка

-игровое поле
-кубик d6
-16 кораблей (по 4 каждого цвета)
-Облако
-рулетка управления облаком
-32 карточки товаров (8 сахар, 5 нефть, 7 дерево, 4 бананы и 8 карт бонусов домашнего порта)

7.34 8

Награды добавить

  • добавить
  • фото или видео
  • статью
  • файл или ссылку
  • связанную игру
  • похожую игру
  • событие или новость
  • комментарий

Описание игры

В этой игре вы пытаетесь осуществить успешные транспортные операции в районе мистического Бермудского треугольника. Кидая кубик вы перемещаете один из своих кораблей по торговым маршрутам. Цены в портах меняются с каждой поставкой, так что вы пытаетесь доставить товар, пока цена высока. А в это время по карте перемещается таинственное облако. И если облако пройдет над вашим кораблем, он имеет все шенсы исчезнуть. Каждый ходигрок управляет как облаком, так и кораблем, стараясь обезопасить свои корабли и обрушить стихию на соперников.

Фото и видео

Статьи

Файлы и ссылки

Связанные игры

Похожие игры

События и новости

Комментарии

Игра очень интересная! В детстве – это была самая любимая настольная игра. Где сейчас ее можно приобрести. Может кто в курсе.

только на Ebay видел

Самый простой способ – регулярно мониторить инет-барахолки. Купил недавно в коробке чуть помятой неиграную, нераспакованую не репринт за 200 рублей 🙂 Отсканю – могу скинуть если надо.

Классная игра, будучи детьми в нее очень много играли.

Когда была маленькая играла в эту игру, а потом при переезде потерялась=(( плохо что теперь эту игру не купить. С удовольствием бы приобрела ее. Если у кого есть эта игра и он хочет продать- напишите.

А ни у кого не сталось правил от русского издания? Не выложите если не влом?

А то сейчас пытаюсь переводить родные и вижу следующее:

Страница 5:
3. The cloud is moved by the spin of the spinner after each player has had a turn to move one of his ships.

Страница 7:
3. After all players have had a turn moving one of their ships, the spinner is spun, and the cloud is rotated and moved. The player going first is the first cloud mover and others take turns clockwise.

Таки непонятно в результате, перемещается ли облако после перемещения 1 корабля каждого игрока, или после того как все игроки перемесятя по 1 кораблю каждый из игроков по разу переместит облако? Или облако перемещается всего 1 раз за круг?

Классная игра, в суровые 90-е машины мыл, чтобы купить себе. В русской версии оформление красочней было.

Фига себе! Ее издавали на русском?
Интересно кто и под каким названием.

Логично, что красочнее. В 90-х стандартное оформление игр 70-х было уже не продать. Карточки товаров в исходной игре вообще отпечатаны черной краской на бумаге, что на ощупь больше всего напоминает альбом для рисования

По-моему так и называлась “Бермудский треугольник”. Доводилось играть. А кто выпускал, уже и не скажу. Это вроде еще до развала СССР было.

Ага, именно так и называлась, а выпускал вроде МЛП ПО “Игрушка” г.Ленинград

Ссылка на основную публикацию